FB-FR-CCP

Frame Based, Functionally Reliable, Congestion Control Protocol
Revision 1.7
[van Beschastnikh

August 20, 2005

Contents 4.10 Sync Packet 9
4.11 Checksums 9
1 Protocol Overview 1
5 Connection 10
2 Connection States 3 51 SetUpo 10
5.2 Handshake 10
3 Reliability Function 3 5.3 Data Transfer 11
4 Packet Formats 4 5.3.1 Receiver 11
. 5.3.2 Sender 13
4.1 Generic Header 5 54 Termination 14
4.2 Request Packet 5 oo
4.3 Response Packet 6 6 Sync 15
4.4 DataPacket 6
45 CCAck 7 7 Rate Controls 15
46 VecAck 8 7.1 Congestion Control 15
47 SyncAck ... 9 7.2 Flow Control 15
4.8 CloseReq Packet 9
4.9 Reset Packet, .. 9 8 Security 16

Introduction

FB-FR-CCP (Frame Based, Functionally Reliable, Congestion Control Protocol) is a connection based,
bidirectional transport level protocol that is meant to work on top of IP (Internet Protocol). The protocol is
TCP friendly, and is functionally reliable. This document describes the specifications of the protocol. It does
not describe an API, nor does give justification as to how or why this protocol should be used or implemented.
For the description of the API please refer to [1] and for a nontechincal discussion of implications for this
protocol, please refer to [2].

1 Protocol Overview

Under FB-FR-CCP, a single connection requires two endpoints. the first is an initially passive endpoint we
term as server, this endpoint listens for incoming connections. the second endpoint is initially active as it
connects to the server, we term it the client.

The first exchange is a three way handshake. thereafter the distinction between server and client is lost
due to the bidirectional nature of the protocol and we talk about the sender and receiver instead, or endpoint
if we don’t wish to differentiate. From the protocol perspective of data exchange, it doesn’t matter which
endpoint was the initiator or the accepter of the connection.

Data from the application is not streamed, it is handed down to the protocol in discrete units which
are termed frames. The protocol breaks down frames into fragments, each of which is payloaded onto a
single packet for transmission. A frame is the atomic unit of reliability in FB-FR-CCP. At the receiver side,
fragments are glued back togeather into frames. Once a frame is received in full, it may be collected by an
application.

There are size limitations for frames and fragments. Maximum frame sizes are exchanged during the
protocol handshake and the size of a frame is sent during the initial transmission of the frame. Once the
frame size is acknowledged, it is not sent again. Fragment size remains constant for a particular frame,
although it may vary between frames. Unless set differently by the application, the fragment size is set to
the MTU (Maximum Transmission Unit) for the connection path. This document does not describe how
the MTU or the more ellusive PMTU (Path MTU) are to be determined.

Upon detecting that the sender has transferred the whole frame, the receiver evaluates a boolean reliability
function that takes the state of the frame, its fragments and other information as its arguments. The function
outputs a one if the frame should be kept, and its missing fragments are to be retransmitted. A zero on the
other hand implies that the transmission of this particular frame should be halted and the frame should be
dropped.

This document specifies only one function of reliability although others might make more sense depending
on the use of the protocol. Some alternatives which can extend the usefulness of the protocol are described
in [3].

If the function evaluates to a one, the receiver sends a negative acknowledgement vector (nak vector) to
the sender. This vector will let the sender know which fragments are missing from the frame on the receiver
side. The sender will then resend only these packets in the same manner as before, receiving acks from the
receiver for congestion control. This process of resending missing fragments specified by the nak vector and
then evaluating the reliability function repeats until the frame is transferred completely, at which point the
receiver will pass the frame to the application level.

The protocol satisfies the invariant that every frame is either delivered in full or dropped completely. At
any given moment, there can be a number of incomplete frames. To determine the sending order, the sender
prioritizes the frames based on their age, the older the frame, the higher its priority. At the moment there
is no other qualification of priority.

Termination can be initialized by any endpoint at any time, there are two forms. A connection may be
reset immediately or it can be delayed until the reset is acknowledged by the other endpoint in order to make
it easier to clean up state at the other endpoint.

The rate control for the protocol described in this document is window based. The receiver sends back
acknowledgements (acks) within a ttaw (time to ack window) which has units of time. These packets carry
information relevant to congestion control, such as the number of packets missed since the previous ack.
These acks are not used to determine specific lost fragments, they determine the sending rate and help
establish flow control at the receiver. The congestion control is tcp friendly although more experimentation
and theoretical work is needed to verify this.

The remainder of this document will describe FB-FR-CCP in detail. The organization is structured
around connection states, packet types, and congestion and flow controls.

2 Connection States

Table 1 shows the connection states for FB-FR-CCP. The S is the Server and C is the Client. The connection
states determine the types of packets that can be sent between the end points during that particular state.
Their organization guides the connection and logically divides it into relatively independent units that are
easier to analyze separately.

State ID State Name Description
1 Disconnected Initial state for S and C
2 Listening S’s state while listening for incoming connections
3 CConnecting C’s state while trying to connect to a Listening S
4 SConnecting S’s state after a reply to a Connecting C
5 Connected S’s and C’s state when both have received ack of the other’s acceptance of connection
6 Disconnecting S’s or C’s state while waiting on the other to ack a disconnect

Table 1: State names and descriptions

3 Reliability Function

The reliability function is always defined with respect to a frame. The one used in this document is a kind
of ratio that depends on the number of fragments missing since the last nak vector (see below).

Before each successive attempt to resend the frame, the receiver must compute the boolean reliability
function taking the state history of the frame as arguments to determine whether to send back a nak vector
specifying which fragments are to be resent.

For the purpose of this document, the reliability function is defined as follows:

Let F' be a frame composed of fragments fi,..., fn, each of size S. Also, let C' be the coefficient of
reliability, R be the retransmission count threshold, and M be the missing fragments threshold.

Define the space of negative acknowledgment vectors as the row space of a 0,1 matrix V of dimensions
(TzN). Row ¢ of this matrix specifies an acknowledgement vector a; sent at timestep ¢ where a;j = 1 if the
negative acknowledgment vector includes f;, otherwise a;j = 0. Note that we have to evaluate our reliability
function at timestep 0 (before we sent the first acknowledgement vector). For this reason, we define ag as a
row of ones. This is intuitive as the sender didn’t have any fragments for the frame and would have requested
all of them if it could. Thus the function is only valid for ¢ > 1

We define our reliability function ¢ as a function of timesteps:

Let a; = (a0, .-, atnN)
Let ¢t be the smallest ¢ such that Z;-VZO ag; < M

N
0 if =™ <
t<t 2 jmo e
(t) = 1 otherwise
1 if(t—1) <R
t>t
0 otherwise

To summarize the above, the coefficient of reliability C' is in the range [0, 1]. If the computed ratio
of frags received since last nak vector to the number of frags specified in the last nak vector is less than
the coefficient, the function evaluates to zero, otherwise the function evaluates to a one. The formula is
independent of the fragment size S as it would cancel if we were to weigh the fragments by their sizes (if
introduced into both the numerator and the denominator of the ratio). When the number of missing frags
decreases however, the evaluation changes to make up for the discritization. Instead, below a threshold M,
the function uses a hard retransmissions limit R to determine when to give up on the frame.

In this way, the coeflicient penalizes those frames that lose most fragments regardless of the time it takes
to transmit each or all of them. A coefficient value of 0 indicates a completely reliable connection and a
value of 1 indicates that we never want to resend a fragment to recover from fragment losses. The missing
frags threshold tries alleviate the unstabling effect of discritization on the ratio when the number of missing
fragments is too small.

The constants C, M, and R may be unique to a frame or a connection. Their values should ultimately
be determined by the application.

4 Packet Formats

FB-FR-CCP has various packet types. The type of a packet determines the type of information it carries
as well as the state of the sender and sometimes the state of the receiver as seen by the sender. Some of
the packets specify transitions between connection states, others, such as Ack and Sync packets are used to
facilitate the data exchange, whereas the data itself is transfered in the Data and DataAck packets. Table
4.4 lists all packet types with the state ids in which Receiving and Sending them makes sense.

1D) Type Receiving States Sending States Description

0 Request 2 1 Sent by C ; initializes a connection with S ; 1/3 Handshake
1 Response 3 4 Sent by S ; ack of the Request packet by C ; 2/3 Handshake
2 Data 4,5 5 Transmits application data

3 CCAck 5 5 Acknowledgement regulating congesion control

4 VecAck 5 5 Negative acknowledgement vector specifying missing fragments
5 DataAck 5 5 A piggybacked ack packet on top of a data packet

6 CloseReq 5 5 A request to disconnect, elicits a Reset Packet

7 Reset 3,4,5 3,4,5 A reset of the connection

8 Sync) 5 Resynchronizes a connection after bursts or loss

9 SyncAck 5 5 An acknowledgement of the Sync packet

Table 2: Packet types and descriptions

Whenever an endpoint receives a packet that is not in the set specified in the table for the current state,
they are to ignore it. Likewise endpoints should not send out packets types in a state other than those
specified for each packet type.

The rest of this section describes the packet types and the information they carry in detail. It might be
useful to skip this section and refer back to it when reading the rest of the document.

4.1 Generic Packet Header

1 2 3
012345678901234567890123456789012
ottt bttt —t—t—t—t—t—t bbbttt =ttt bbbttt —+—+
| Source Port Number | Destination Port Number
tot—+
| Packet Length | Checksum |
ottt bbbttt —t—t bttt bbbt —t—t =t —t—b bbb =t —F—+—+
| Type |Version] Options
s B A St S S e S B e St et
| Sequence Number |
tot—+

Every packet in FR-FCPP has a generic header to which the formats outlined in the sections below are
postfixed. Some of these packets do not carry any data besides the generic header.

With each packet we identify source and destination ports as UDP and TCP protocols. We also send
the packet length and a checksum of the entire packet. These initial fields reflect the UDP header exactly.
This is done so that FB-FR-CCP can be more easily implemented on top of UDP. These fields will not be
mentioned elsewhere in this document and can assume to have UDP behavior.

The generic header also includes a packet type field (see Table 4.4), the protocol version, a space for
options and a sequence number. Interpretation of the options and the sequence number fields depend on the
type of the packet.

4.2 Request Packet

1 2 3
456789012345678901 89 1
—t—t—t—t—t—t—t—t—t—t—t—t =ttt =ttt bt =ttt =t b=t =t —+—

12

w
N
w
KN
(6
o))
\I
e

+
+

Max Frame Size
—t—t—F—t—t—t—F—t—t—t—F—F—t—F—F—F—t—F—F—F—t—t—F—F—F—F—F—F——F—F—
Receive Buffer Size
B s e S S B e ah Eat T T s mt Tt S S B B 1

Send Buffer Size
—t—t—d—t—t—t—F—t—t—t—F—F—t—t—F—F—t—F—F—F—t—F—F—F—F—F—F—F——F—F+—

+ — 4+ — 4+ — + N

Init Frame Number |
—d—t—t bttt —F—F— bt —F—+—+

+ —+—+—+ —+ 0O

A request packet is sent by the client to initiate a connection with a server. This packet parametrizes
the sending endpoint for the connection to follow.

The sequence number field in the generic header of this packet is the sender’s initial sequence number.
The max frame size defines a limit on frame sizes. Receive and send buffer sizes parametrize the flow control
mechanism.

4.3 Response Packet

1 2 3
4567890123456789012345678901
—t—t—t—t—t—t—t—d—t—t—t—t—t bttt =ttt =ttt — b=t~ —F—+—

12

+ W

Init Frame Number | Server Connection Port
—t—t—d—t—t—F—F—F—t—t—F—t—t—t—F—F—t—F—F—F—t—F—F—F—F—F—F—F——F—F—

B s T S S B B s s T T s et Tt S B e B S e S
Receive Buffer Size
—t—t—t—t—t—t—F—t—t—t—F—t—t—t—F—F—t—t—F—F—t—F—F—F——F—F—F——F—+—

Send Buffer Size
—t—t—t—t—t—t—F—t—t—t—F—t—t—F—F—F—t—t—F—F—t—t—F—F—F—F—F—F——F—F+—

+ —+—+ —+ —+ O

2
+
|
+
Max Frame Size |
+
[
+
|
+

Sent by the server endpoint, the response packet is a reply to the request packet. The request/response
pair should not be used to determine round trip time between the endpoints as the server may delay the
response packet indefinitely. The response packet format is almost identical to that of the request packet.
The only difference is the server connection port. This field specifies the server endpoint port number to
which all packets for this connection should be sent. This allows the server to demultiplex the listening port
from any accepted connections and use it only for receiving request packets.

4.4 Data Packet

1 2 3
1234567890123456789012345678901
—t—t—t—t—t—t—F—t—t—t—t—t—F—t—t—t—t—t—F—F—t—t—Ft—t—F—F—t—F—F—+—+—

0 2
+ +
| Frame Number | Fragment Number [
ottt bt —t =ttt bttt — =ttt bt~ —t— bbbt~ —t—+—+
| Frame Length (optional) |
e T S S R T St o S S

Data packets carry frame fragments. With each Data packet we associate two fields. The frame number
identifies the frame for the fragment. The fragment number specifies the offset of the fragment within the
frame, as counted in multiples of fragment size which is specific to a frame.

Frame numbers and sequence numbers are incremented modulo the maximum number of frames and
packets respectively. In order to find out the size of the fragment in the data packet, the sum of the header
field lengths is subtracted from the size of the packet (a field in the generic packet header).

The frame length field is an optional field appearing only when the OPT_FRAME_LENGTH option is set in
the generic packet header. This field is present in the initial data packets, but once a data packet carrying
the frame length has been acknowledged, the frame length field is not sent.

Acknowledgement Packets There are three distinct forms of acknowledgement. The first is congestion
control acknowledgements, which we will term CC_Acks. The second type of acknowledgement is a nega-
tive vector acknowledgement (nak vector ack), which we will term Vec_Ack. The last is a synchronization
acknowledgement which we term Sync_Ack. The three forms play different roles in the protocol. CC_Acks
are acknowledgements sent regularly for congestion control. Vec_Acks are sent after an incomplete frame is
transferred, Sync_Acks are responses to Sync packets that synchronize the endpoints’ congestion controls.
DataAcks are not a distinct form of acknowledgment since they are Data packets with prefixed (piggybacked)
CC_Ack packet data.

Ack Packet Type Description
CC_Ack Sent every TTAW seconds so that the sender may adjust its sending rate
Data_Ack Carries Data and a CC_Ack
Vec_Ack Acknowledges a frame and lets the sender know which pieces the receive needs resent
Sync_Ack Prompted by a Sync packet, used for estimation of RTT by the receiver
4.5 CC_Ack
1 2 3

012345678901234567890123456789012
s Tt S S B s St S S S Sty Y
| Last Seq Number Received |
s T e R Bt S B e B A s
| Num of Frags Lost | Oldest Frame Number to Resend |
s s Tt St L e o

CC_Acks (congestion control acknowledgement) packets must be sent once per TTAW. Their role is to
signal the other endpoint of possible path congestion. For more see the Congestion Control section.

CC_Ack caries three pieces of information: the sequence number of the most recent data carrying packet,
the number of packets this endpoint has estimated as having been lost since the previous transmission of a
CC_Ack, and the frame number of the oldest incomplete frame which this endpoint expects to be resent.

4.6 Vec_Ack

1 2 3
012345678901234567890123456789012
bttt ettt =ttt bttt —F—F— bbbttt —F—F—F—F—F—F—+
| Frame Number to Resend | Reserved |
VR SUSFNRRF SR RN SRS MRS NN W WSS SRR SR SR SRS SRR UYWAY RSN TS SRR SRR RN RN R WY WY WS S SN R RN
| Negative Bit Vector |
bttt —t—t—t—F—t—t -ttt bttt —F—F— b —F— bt —F—F—F—F—F —F—F—F—F—+

The Vec_Ack (negative vector acknowledgement) packets are a way to tell the sender that the fragments
of the frame in question have been transferred at a high enough reliability that the receiver would like to
continue receiving the frame. Specifically the receiver needs the missing fragments specified by the negative
bit vector field.

This packet may effect the sending priority of the endpoint receiving this packet. If the frame being
currently sent is older or the same as the frame number field, the sender updates the state of the frame to
reflect the fragments that must be resent and resends them. If the current frame is newer, the sender must
stop sending it and begin resending the frame specified with the frame number field. The sender resends
only those fragments that are specified by the negative bit Vector field in the Vec_Ack.

4.7 Sync_Ack

The Sync_Ack packet is sent as a response to the Sync packet and is used to recompute the RTT estimate
on the receiver side. In the future it might be extended to buddle a set of other options that might need to
change in the middle of a connection. The Sync_Ack does not carry a payload. It’s size is that of the generic
packet header.

4.8 CloseReq Packet

The Close_Req packet is the “nice” way to close a connection as the sender will wait (but eventually timeout)
on an acknowledgement packet from the receiver. The Close_Req does not carry a payload. It’s size is that
of the generic packet header.

4.9 Reset Packet

The Reset packet is a second and a last resort method to close a connection. The sender thereafter drops all
future incoming packets. The Rese packet does not carry a payload. It’s size is that of the generic packet
header.

4.10 Sync Packet

The Sync packet is meant to stabilize the congestion control. It is used in conjunction with the Sync_Ack
acknowledgement sent as a reply to the Sync packet and used to estimate the RTT between the endpoints.
The Sync packet does not carry a payload. It’s size is that of the generic packet header.

4.11 Packet Checksums

Because the first prototype of the protocol is built on top of UDP, some features provided by UDP take
care of alleviating the problems usually associated with programming directly at the IP level. First and
foremost, UDP takes care of removing multiple copies of a packet and has port fields and address fields on
every packet.

Init() Yo Listen() N
start ,\}/ @ Request ,@

Connect()

Close(),Reset()

Response @ CloseReq,Reset @

Figure 1: DFA representation of the protocol connection states
Another feature is checksuming. UDP checksums cover the whole datagram plus some IP fields, obviating
the need for checksums in a FB-FR-CCP prototype built on top of UDP. Thus the initial prototype uses
UDP to check and attach checksum to all incoming and outgoing packets.

5 Connection

Figure 1 is a summary of the first two tables in the paper, depicting a deterministic finite state machine where
the states are Connection States from Table 1 (identified by their ID from the table), and the transitions
(edges) are packet types from Table 4.4. All the transitions which are missing from the picture are taken
to be invalid and are ignored, i.e. they are identity transitions, so for example a Request packet would be
ignored if received in a Connected state (ID 5). The diagram also leaves out the details of the source address
and port numbers. These are cached during the handshake and validated for each incoming packet.

Note that the transitions for some of the states depend on factors other than packet types, timeouts
might also trigger state transitions for example.

The Following sections will break up the connection into three separate parts: Set Up, Handshake, Data
Transfer and Termination. Terms and their explanations relevant to each step may be found in the tables
relegated to the end of the document.

5.1 Set Up

Initially both endpoints are in the Disconnected state. To transition into the next state, the protocols at
both endpoints must have defined the connection variables summarized in Table 3. Just as with TCP, an
endpoint may choose to become a server or a client depending on whether it chooses to listen for a connection
or send a Request packet to a listening connection.

Each frame sent by a sender is associated with an identifier that is initialized and exchanged during
the handshake. The initial value for this frame number is generated independently by each endpoint and
exchanged during the handshake. The recommended procedure to generate the initial frame number is to
use a randomizer modulo 2FRAME—ID-LEN, as the purpose of this identifier is two fold: to map packets to
frames and to alleviate the danger of spoofing of the connection. The latter is effective because the receiver
is aware of only FRAMES_WINDOW frames at a time and drops packets for which the frame number deviates
outside of the window. Every successive frame increments the working frame number by one.

The bidirectional nature of the connection following the handshake allows us to deal with a “half con-
nection,” and associate with it a sender and a receiver both of which may be either of the endhosts.

10

To disambiguate the attributes of a half connection as seen by an endpoint in Table 3, we prepend “R._”
for remote and “L_" for local. As an example, to disambiguate, the local FRAGMENT_SIZE for a frame as seen
by an endhost will be denoted L_FRAGMENT_SIZE, likewise the remote attribute becomes R_FRAGMENT_SIZE.

5.2 Handshake

Client The client initiates the connection by sending a Request packet. The client then enters CConnecting
state. If the server does not reply within a CONNECTING_RESPONSE_TIMEOUT seconds threshold, the connection
packet is resent. After CONNECT_ATTEMPTS_THRESHOLD, the client stops retrying and signals an error to the
application.

Upon receiving a Request packet, a server may take an indefinite time to respond. The Request and
Response pair of packets should not be used to compute the initial RTTn estimate at the client endpoint.

Server After responding with a Response packet, the server enters the SConnecting state. If the Response
packet is lost, the server will wait for the client to retry with the Request packet before sending another
Response packet. After CONNECT_TIMEQUT second, the server will drop the connection and return to Listening
state.

Once the client receives a Response packet from the server, it enters the Connected state. The next
packet to come from the client, unless it is a Reset packet, must be an Ack packet and it will place the server
into Connected state.

5.3 Data Transfer

Data Transfer under FR-FCPP can be viewed at two different scales. At the fragment or packet level, we
are sending fragments of a constant size (relative to a frame), not caring about reliability, determined only
to send as much as possible under the rate controls.

At the frame level, we are filling up variable sized frames with fragments (all of a constant size except
perhaps the last one). After we see that the sender has moved on to the next frame, we evaluate the reliability
function and either keep the frame around or discard it depending on whether the function evaluated to a 0
or a 1 respectively.

If we keep the frame then we ask the sender to resend the missing pieces of the frame using a bit vector
to represent the missing fragments in the frame and do not let the sender move on to newer frames until this
particular one has been completed.

The retransmission of missing fragments happens as before, if the frame is again incomplete after all the
fragments have been retransmitted, we repeat the process as necessary either until the reliability function
evaluates to a 0 or we received the full frame. Once the frame is complete, we allow the application to pick
it up and also let the sender to send us new frames.

5.3.1 Receiver

Designate the oldest frame the receiver is interested in (missing packet for) be Oldest_Frame, and the newest
frame the receiver has seen so far in the FRAME_WINDOW be Newest_Frame. Also let the sequence number of
the last data packet received be Last_Seq Number.

Fragment numbers are only relevant when talking about a specific frame number. Fragment numbers
start at 0 and increment with each data fragment, also each subsequent data carrying packet increments
the sequence number independently of the frame number- this lets us determine how many data carrying
packets were sent but lost or delayed between the reception of any two data carrying packets. Note that it
is assumed that the packet has passed the checksum validation and invalid attributes are not due to data
corruption.

11

Let D be a data packet with attributes Seq_Number, Frame_Number, Frame_Len, Frag Number, Data_Len.
Upon receiving D the receiver validates the attributes with a set of rules, and ignores D if any of them are
true.

e Packet does not carry a Frame_Len (controlled with the OPT_FRAME_LENGTH option) but frame Frame_Number
doesn’t yet have a defined Frame_Len.

Seq_Number < Last_Seq_Number

Frame_Len # stored frame length for the frame Frame Number
(only if we have a record for this frame already)

(Frame_Len > MAX_FRAME_SIZE) V (Frame_Len < FRAGMENT_SIZE)

(Frag_Number + 1) x FRAGMENT_SIZE > Frame Len
(note that Frag_Number starts at 0)

e Data_Len > FRAGMENT_SIZE V Data_Len = 0
e Frag Number > | Frame_Len / Frag_Size]

o ¢(FrameHistory) = 0 where ¢ is defined previously as the reliability function.

A New Frame Number (ie. Oldest_Frame < Frame Number < Newest_Frame)

Let M = min(FRAMES_WINDOW — (Newest_Frame - Oldest_Frame), (Frame_Number - Newest_Frame))

12

Note that the min in the definition of M, in a sense limits our scope of frame vision to the FRAMES _WINDOW.
M =0 : D doesn’t fit into our FRAMES_WINDOW and we therefore ignore D.

M > 0 : D has a frame number in the future. This causes the sender to allocate a buffer of size
Frame_Length to accommodate the new frame specified by Frame_Number.

M > 1: Whole frames were lost or delayed. We send M — 1 negative vector acknowledgements
filled with 1s to indicate that the sender received no fragments for any of the M — 1 frames
between Newest_Frame and Frame_Number. Each of them will carry a Frame_Number attributed
of (Newest_Frame + k) for k € {1,..,M — 1}.

The data portion of the packet is then placed within the newly allocated buffer for the frame Frame _Number
at a location offset by Frag_Number * L_FRAGMENT_SIZE.

Urgency
For each incomplete frame with frame number € {Oldest_Frame, ...,Newest_Frame}
— Urgency[frame number] is incremented by one. Initially Urgency[i] = 0 for all i. The value for

each frame_number determines when to send another Ack Vector to the sender urging the sender
to resend the missing fragments of the incomplete frame in which the receiver is still interested.

— If Urgency[frame_number] > URGENCY_THRESHOLD then a Vec_Ack packet is sent with the ACK_VECTOR_OPT
option set to 1, and a compressed bitmap describing the state of the incomplete frame. Each of
these packets will carry the attribute Frame Number set to the frame_number.

The Vec_Acks tell the sender that there are incomplete frames to be dealt with, and that they should
be attended to first. The missing fragments details are sent so that the sender will be able to resend them.
The sender must prioritize the sending of fragments based on the age of their frames: the oldest receiving
the highest priority.

A Known Frame Number (Oldest_Frame < Frame Number < Newest_Frame)

V frame number € {Oldest_Frame, ..., Frame Number}

— Urgency[frame_number| increments by one and if Urgency[frame_number| > URGENCY_THRESHOLD
then we send a Vec_Ack back to the sender urging the resending of the missing fragments for each
incomplete frame older than the one we’ve received.

V frame_number € {Newest_Frame , ..., Frame_Number}

— Urgency[frame_number| = 0

Notes

e Vec_Ack for an incomplete frame will be repeated until a fragment destined for this or older frame is
received.

e An URGENCY_THRESHOLD of 1 will squeeze the frame window to as little as two frames, as an incomplete
frame will request its missing fragments immediately after a fragment for a new frame has been received.

e Upon receiving the last fragment for a frame. The receiver delivers the frame to the application.

e To make sure that the frame is removed from the sender’s buffer space, the frame needs to be implicitly
acknowledged by a CC_Ack which will specify a frame number attribute that is newer than the frame
that has been completed, thus allowing the sender to free its buffer space of this frame.

5.3.2 Sender 13

Note that the sender’s set of variables is independent from its other half connection in which this sender is
a receiver.

Let the newest frame that sender is sending have the frame number Last_Frame.

The sender maintains two queues for allocated frames. The first is the Current_Queue, the second is the
UnAcked_Queue.

The Current_Queue is a priority queue, prioritized by the age of the frames, the older the frame, the
higher its priority. The problem of the wrapping of frame numbers is solved by prioritizing in a small frame
space limited naturally by queue size constraints.

The Current_Queue contains frames that still need some or all of their fragments sent. Each frame in
this queue has a fragment bitmap to let the Sending mechanism know exactly which fragments need to be
resent. After being resent, the frame is moved to the UnAcked_Queue.

The UnAcked_Queue contains frames that have been already sent once, but might need some or all of
their fragments resent in the future. Thus, depending on a receiver’s Ack pattern, a frame from this queue
may move to the Current_Queue upon the arrival of a Vec_Ack, or it might be deallocated if the receiver
indirectly acknowledges the frame with a CC_Ack.

A New Frame Before allowing a new frame to enter the queueing system, the sender discards the frame
if it has an illegal frame length.

Once the frame has been decided as valid, it receives a frame number Last_Frame + 1, and it is fragmented
into FRAGMENT_SIZE sized fragments, except perhaps the last one. Each one of these is enumerated starting
from 0. A vector map filled with Os is associated with the new frame and the frame is then enqueued into
the Current_Queue.

Sending a Frame

The frame to be sent is taken from the top of the Current_Queue and the fragments specified by the
associated bitmap are sent in order.

Asynchronous events The sender must respond to asynchronous Ack packets arriving from the receiver
that have to do with the frames in the queues. The Vec_Ack packets trigger a resend of the fragments
specified by the bitmap on the packet (once ored with the local copy). CC_Acks may trigger a deallocation
of the frame due to an implicit positive acknowledgement.

Receiving a Vec_Ack Let the attributes of the arrived Vec_Ack be Frame_Number and Bit_Vector.

If frame Frame_Number is in the Current_Queue, update its vector by bitwise or’ing Bit_Vector with
the old bitmap.

If frame Frame_Number is in the UnAcked_Queue, move it to the Current_Queue.
Receiving a CC_Ack Let the Oldest Fame Number to Resend attribute on the CC_Ack packet be
Oldest_Frame_Number.

Deallocate frames from Current_Queue and UnAcked_Queue that are older than the Oldest_Frame_Number.

5.4 Termination

Termination can be initiated in two ways by either endpoint. The first way is to send a CloseReq packet.
This packet will transition the Receiving endpoint into Closing state and will alert the application of the
new state. An Ack with a CLOSING_OPT option set to one is the only valid acknowldgement of the CloseReq
packet. After CLOSING_TIMEOUT seconds the sender resets the connection and all packets drops all packets
coming from the other endpoint.

14

A second way to initialize termination is to send a Reset packet. Packets of this type are not acknowl-
edgeable. A Reset packet initiates immediate termination of the connection by both the receiver of the
packet and the sender.

6 Sync

Sync packets are meant to estimate RTT (round trip time). Upon receiving a Sync packet, an endpoint is
required to respond with a SyncAck packet as soon as possible. RTT is used to determine the WINDOW size,
these are specific to each endpoint.

7 Rate Controls

Rate controls ensure that the sender does not overrun the receiver with its sending rate, and that the protocol
is TCP-friendly towards other connections that are coexisting in the network at the time.

Congestion and flow controls control only the rate of Data or DataAck packets, Acks and other packet
types are not counted towards the rate. The reason for this is because the overhead is not large enough to
make for a substantial contribution- Acks are sent only every TTAW seconds, and are only a small fraction of
the full MTU of the connection, even on relatively slow links. Therefore their impact on the friendliness of
the connection is minimal. Likewise, Acks are processed on the receiver’s side without being buffered, thus
there is no danger of overrunning any buffer.

Note: that the initial implementation is a user level implementation and therefore does not take into
account Kernel space buffers which may indeed be overrun but over which the implementation has no
control.

7.1 Congestion Control

The CC_Ack acknowledgment packets determine most of the congestion control mechanism.

Both sender and receiver will maintain congestion windows (CW) that keeps a count of the number of
packets in flight.

A CC_Ack packet (or a DataAck packet) must be sent by both endpoints at least once every TTAW (Time
to Ack Window) seconds. It provides information to the Congestion Control mechanism so that it may
determine whether the current CW (congestion window) is too large and should be shrunk or if the network
may allow for a higher load.

Let Last_Seq, Num_Lost, and Oldest_Frame_Number be the attributes of the received CC_Ack.

If an endpoint misses an Ack within a TTAW time period, an endpoint halves its sending rate by halving
the WINDOW. Note that WINDOW cannot be smaller than one packet.

If an endpoint receives the Ack within a TTAW time period, this indicates that the data link may support
more throughput. The endpoint thus increments WINDOW by one.

7.2 Flow Control

Flow Control works alongside Congestion Control to limit the rate of the sender. Flow Control is established
by the receiver and depends on the available buffer size. The two parameters that are prerequisite for this
are sender Buffer Size - SBS, and receiver Buffer Size - RBS. Since each endpoint maintains a local and a
remote copy of both, they will be denoted as L_SBS, L_RBS and R_SBS, R_RBS respectively.

15

The buffer sizes determine how many packets each endpoint may hold. They are exchanged during the
handshake as MAX_FRAME_SIZE is known to each endpoint before a connection is established. The client’s
RBS and SBS are send with the Request packet, and the server’s RBS and SBS are part of the Response packet.

The WINDOW size is actually a minimum of SBS_R and current window of the congestion control (ie.

min(CC,FC)).
8 Security

The security

References

[1] “FB-FR-CCP API”, To be written
[2] “Nontechnical Discussion of FB-FR-CCP” To be written

[3] “Reliability Function Alternatives to FB-FR-CCP” To be written

16

Name Units Description

MAX_FRAME_SIZE bytes Maximum fragment size for this connection
FRAGMENT_SIZE bytes Fragment size for connection
SEND_BUFFER_SIZE bytes Sending buffer size
RECEIVE_BUFFER_SIZE bytes Receiving buffer size
RELIABILITY_COEF float € [0,1] Controls the discarding of frames after an initial tra
CONNECTING_RESPONSE_TIMEQOUT sec Timeout for a Response packet
CONNECT_ATTEMPTS_THRESHOLD int Number of attempts to connect to a server
FRAMES_WINDOW int Maximum number of frames to maintain simultaneously b
URGENCY_THRESHOLD int Number of packet to receive for a newer frame before sending a Vec._.
FRAME_ID_LEN bits Length of the frame number
TTAW sec Time to ack window - max seconds to wait before sending

Table 3: Connection Parameters

17

